Abstract

Hypoxia in aggressively proliferating tumor cells has been demonstrated to restrict the efficiency of photodynamic therapy owing to its oxygen (O2 )-dependent generation of singlet oxygen (1 O2 ) from photosensitizers under light irradiation. To address this problem, we propose a small-molecule dye-based 1 O2 capturing agent, B1. B1 not only bears a near-infrared absorbing azo-boron dipyrromethene backbone, but also has 1,4-dimethylnaphthalene, which facilitates the capture of 1 O2 to form endoperoxide (B1-SO). B1-SO undergoes a reversible reaction via near-infrared photothermal stimulation, thus allowing 1 O2 release. Based on this mechanism, stable B1-SO containing micelles (B1-SO NPs) were prepared and employed as 1 O2 nanocarriers to ablate cancer cells in vitro. Taking advantage of this O2 -independent 1 O2 releasing ability, B1-SO NPs were demonstrated to have efficient cytotoxicity under near-infrared irradiation, especially in a hypoxic environment. The unique O2 -independent 1 O2 generation process of B1-SO NPs suggests they can be used as novel cancer phototherapy agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.