Abstract

Chronic wounds are characterized by long-term inflammation and persistent infection, which make them difficult to heal. Therefore, an urgent desire is to develop a multifunctional wound dressing that can prevent wound infection and promote wound healing by creating a favorable microenvironment. In this study, a curcumin-based metal-organic framework (QCSMOF-Van), loaded with vancomycin and coated with quaternary ammonium salt chitosan (QCS), was prepared. Multifunctional composite hydrogels were conveniently synthesized by combining methacrylic anhydride modified gelatin and methacrylic anhydride modified oxidized sodium alginate with QCSMOF-Van through radical polymerization and Schiff base reaction. It is important to note that the QCSMOF-Van could capture bacteria through the positive charges on the surface of QCS. In this process, due to the synergistic effect of broad-spectrum antibacterial Zn2+ and vancomycin, the metabolism of bacteria was well inhibited, and the efficient capturing and rapid killing of bacteria were achieved. The QCSMOF-Van hydrogels could precisely regulate the balance of M1/M2 phenotypes of macrophages, thereby promoting the regeneration of nerves and blood vessels, which promotes the rapid healing of chronic wounds. This advanced cascade management strategy for tissue regeneration highlights the potential of multifunctional composite hydrogels in chronic wound dressings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call