Abstract

A fluorescence quenching enhanced immunoassay has been developed to achieve ultrasensitive recognition of human epididymal 4 (HE4) modifying the fluorescence quencher. The carboxymethyl cellulose sodium-functionalized Nb2C MXene nanocomposite (CMC@MXene) was firstly introduced to quench the fluorescence signal of the luminophore Tb-Norfloxacin coordination polymer nanoparticles (Tb-NFX CPNPs). The Nb2C MXene nanocomposite as fluorescent nanoquencher inhibits the electron transfer between Tb and NFX to quench the fluorescent signal by coordinating the strongly electronegative carboxyl group on CMC with Tb (III) of Tb-NFX complex. Simultaneously, due to the superior photothermal conversion capability of CMC@MXene, the fluorescence signal has been further weakened by the photothermal effect driven non-radiative decay of the excited state under near-infrared laser irradiation. The constructed fluorescent biosensor based on CMC@MXene probe finally realized the enhanced fluorescence quenching effect, and achieved ultra-high sensitivity and selective detection of HE4, exhibiting a wide linear relationship with HE4 concentration on the logarithmic axis in the range of 10-5 to 10ng/mL and a low detection limit of 3.3fg/mL (S/N = 3). This work not only provides an enhanced fluorescent signal quenching method for the detection of HE4, but also provides novel insights for the design of fluorescent sensor toward different biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call