Abstract
Cryopreservation is essential to store living cells and tissues for future use while maintaining the proper levels of cell functions. The use of cryoprotective agents (CPAs) to inhibit intracellular ice formation during cryopreservation is vital for cell survival, but the addition and removal of CPAs and ice recrystallization during rewarming will cause fatal injury to cells. The conventional CPA loading and unloading methods generate osmotic shocks and cause mechanical injury to biological samples, and the conventional method of rewarming using a water bath also leads to ice recrystallization and devitrification. A new CPA-loaded microparticle-based method for loading and photothermal rewarming under near-infrared (NIR) laser irradiation was proposed to overcome these difficulties. We have successfully achieved the controlled release of CPAs (2 M EG, 2 M PG, and 0.5 M trehalose) with a graphene oxide (GO, 0.04% w/v) core from a 1.5% (w/v) sodium alginate shell to the human umbilical vein endothelial cells (HUVECs) within 60 s using NIR laser irradiation (808 nm Lasever at 5000 mW/cm2) and successfully recovered the CPA-loaded cells with 0.04% (w/v) GO in 8-10 s using the same NIR irradiation. The results show that this method achieved 25% higher viability of HUVECs compared to the conventional method. In short, this study proposes a new approach for achieving controlled CPA loading to cells with a photothermal-induced strategy for cell cryopreservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.