Abstract
Photothermal therapy (PTT) is a promising alternative treatment for bacterial infection. In this study, a photothermal nanoparticle was prepared by encapsulating IR780 into N-octyl-D-gluconamide (GA). The photothermal nanoparticle (IR780-GA NP) was evenly suspended in water with an average particle size of 42.2 nm. After exposure to near-infrared light, the temperature of the IR780-GA NP suspension was increased by around 15 °C within 5 min. This leads to an obvious microbial inactivation effect when it is adsorbed to methicillin-resistant Staphylococcus aureus (MRSA, 2 orders of magnitude reduction of CFU concentration) and Escherichia coli (1.5 orders of magnitude reduction of CFU concentration). Interestingly, Salmonella typhimurium survived after the same treatment. Different strains also showed variations. The hemolysis test showed that IR780-GA NPs had good blood compatibility. In vivo experiments collaborated with the in vitro findings. The IR780-GA NP-triggered photothermal effects killed 63–100% of bacteria in the wound site of mice depending on the IR780-GA NP concentration. Overall, this study provided the fundamental basis of IR780-GA NPs in four aspects: fabrication, photothermal characterization, selective adsorption, and microbial inactivation (in vitro and in vivo). The findings of this study provide a practical approach for the development of mild photothermal therapy which targets specific bacterial strains and treats MRSA infection effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.