Abstract

Advances in phototheranostics revolutionized glioma intraoperative fluorescence imaging and phototherapy. However, the lack of desired active targeting agents for crossing the blood-brain barrier (BBB) significantly compromises the theranostic efficacy. In this study, biomimetic proteolipid nanoparticles (NPs) with U.S. Food and Drug Administration (FDA)-approved indocyanine green (ICG) were constructed to allow fluorescence imaging, tumor margin detection, and phototherapy of orthotopic glioma in mice. By embedding glioma cell membrane proteins into NPs, the obtained biomimetic ICG-loaded liposome (BLIPO-ICG) NPs could cross BBB and actively reach glioma at the early stage thanks to their specific binding to glioma cells due to their excellent homotypic targeting and immune escaping characteristics. High accumulation in the brain tumor with a signal to background ratio of 8.4 was obtained at 12 h post-injection. At this time point, the glioma and its margin were clearly visualized by near-infrared fluorescence imaging. Under the imaging guidance, the glioma tissue could be completely removed as a proof of concept. In addition, after NIR laser irradiation (1 W/cm2, 5 min), the photothermal effect exerted by BLIPO-ICG NPs efficiently suppressed glioma cell proliferation with a 94.2% tumor growth inhibition. No photothermal damages of normal brain tissue and treatment-induced side effects were observed. These results suggest that the biomimetic proteolipid NP is a promising phototheranostic nanoplatform for brain-tumor-specific imaging and therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.