Abstract
The light environment in forest understories is highly dynamic because the weak shade light is period- ically punctuated by lightflecks lasting from a second or less to tens of minutes. Although present for only a small fraction of the day, these lightflecks can contribute more than two-thirds of the photosynthetically active radiation. Several factots are of importance in determining the capacity of a leaf to utilise lightflecks. Following long low-light periods the induction state of the photosynthetic apparatus is limiting. During induction, 20-60 min may be required before maximum assimilation rates are reached due first to a light activation requirement. of ribulose-1,5-bisphosphate carboxylasel oxygenase and later to the light-induced stomatal opening. Continuous light is not required and induction occurring during a series of lightflecks results in higher carbon gain for later as compared to earlier lightflecks. Post-illumination CO2 fixation resulting from utilisation of metabolite pools built up during the lightfleck can significantly enhance carbon gain during short (5-20 s) lightflecks. The carbon gain of a leaf in response to a lightfleck is a consequence of the limitations imposed by induction state plus the enhancements due to post-illumination CO2 fixation. In the field, this will depend on the frequency and duration of the lightflecks and the duration of the intervening low-light periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.