Abstract

Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink. We used a meta-analytic approach, focusing on tropical photosynthetic temperature responses, to address this knowledge gap. Our dataset, gleaned from 18 independent studies, included leaf-level light saturated photosynthetic (Asat) temperature responses from 108 woody species, with additional temperature parameters (35 species) and rates (250 species) of both maximum rates of electron transport (Jmax) and Rubisco carboxylation (Vcmax). We investigated how these parameters responded to mean annual temperature (MAT), temperature variability, aridity, and elevation, as well as also how responses differed among successional strategy, leaf habit, and light environment. Optimum temperatures for Asat (ToptA) and Jmax (ToptJ) increased with MAT but not for Vcmax (ToptV). Although photosynthetic rates were higher for "light" than "shaded" leaves, light conditions did not generate differences in temperature response parameters. ToptA did not differ with successional strategy, but early successional species had ~4 °C wider thermal niches than mid/late species. Semi-deciduous species had ~1 °C higher ToptA than broadleaf evergreen. Most global modeling efforts consider all tropical forests as a single "broadleaf evergreen" functional type, but our data show that tropical species with different leaf habits display distinct temperature responses that should be included in modeling efforts. This novel research will inform modeling efforts to quantify tropical ecosystem carbon cycling and provide more accurate representations of how these key ecosystems will respond to altered temperature patterns in the face of climate warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.