Abstract

Research Highlights: For the first time, the Pinus sibirica Du Tour and Abies sibirica L. conifer forest at the West Sayan ridge timberline has been explored to reveal which species is likely to react to climate change and a shift of the timberline. Such a shift may modify the ecological functions of the forests. Background and Objectives: Long-term climate change has become obvious in the mountains of southern Siberia. Specifically, a half-century rise in annual mean temperatures has been observed, while precipitation remains unchanged. Trees growing at the timberline are likely to strongly react to climate alterations. The objective was to estimate which of the two species sharing the same habitat would benefit from climate alteration and shifting of the timberline. Materials and Methods: At several altitudes (from 1413 to 1724 m a.s.l.), samples of P. sibirica and A. sibirica needles have been collected and contents of chlorophyll a and b as well as carotenoids were measured in June 2019. The temperature of needles of the two species was measured in both cloudy and sunny weather conditions. Results: The studied species have been shown to have different patterns of pigment variations with the growth of altitude. The decline of chlorophylls and carotenoids was more pronounced in P. sibirica (ratio at timberline ca. 2.2) than in A. sibirica (ratio ca. 3.1). Accordingly, the electron transport rate decreased more strongly in P. sibirica at the timberline (ca. 37.2 μmol of electrons/m−2 s−1) than in A. sibirica (56.9 μmol of electrons/m−2 s−1). The temperatures of needles in both cloudy and sunny weather were higher in A. sibirica (10.5 and 43.3 °C, respectively) than in P. sibirica (3.8 and 24.2 °C, respectively). Conclusions: The considered physiological and ecological traits show that P. sibirica is better protected from higher-altitude hazards (excess insolation, rise of temperature etc.) than A. sibirica. P. sibirica may be therefore a more likely winner than A. sibirica in the movement of the mountain timberline under climate warming in the area.

Highlights

  • In various regions of the globe, climate warming has become a matter of fact

  • The temperatures of needles in both cloudy and sunny weather were higher in A. sibirica (10.5 and 43.3 ◦ C, respectively) than in P. sibirica (3.8 and 24.2 ◦ C, respectively)

  • The highest amount of chlorophyll a in the needles of P. sibirica was found in the needles of trees

Read more

Summary

Introduction

In various regions of the globe, climate warming has become a matter of fact. Forest vegetation may react more weakly or strongly to the change, but those forests occupying the very extreme edges of distribution are expected to be more sensitive to the climatic trend [1]. The shift of the forested zone borderline is an apparent indicator of climate change and of important events shaping the outlook of landscapes. The ability of trees to move up the timberline will to a great extent arise from their ability to acclimate and grow. The system of tree photoreceptors ensures the start of acclimation to overwinter freezing temperatures [2].

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.