Abstract

The selective uphill and downhill movement of protons in and out of photosynthetic membrane enabled by ion pumps and ion channels is key to photosynthesis. Reproducing the functions of photosynthetic membranes in artificial systems has been a persistent goal. Here, a visible-light-harvesting nanofluidic channels is reported which experimentally demonstrates the ion translocation functions of photosynthetic membranes. A molecular junction consisting of photosensitive ruthenium complexes linked to TiO2 electron acceptors forms the reaction centers in the nanofluidic channels. The visible-light-triggered vectorial electron injection into TiO2 establishes a difference in transmembrane potential across the channels, which enables uphill transport of ions against a 5-fold concentration gradient. In addition, the asymmetric charge distribution across the channels enables the unidirectional downhill movement of ions, demonstrating an ion rectification effect with a ratio of 18:1. This work, for the first time, mimics both the uphill and downhill ion translocation functions of photosynthetic membranes, which lays a foundation for nanofluidic energy conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.