Abstract

Artificial membranes precisely imitating the biological functions of ion channels and ion pumps have attracted significant attention to explore nanofluidic energy conversion. Herein, inspired by the cyclic ion transport for the photosynthesis in purple bacteria, a bilayer inorganic membrane (TiO2 /AAO) composed of oxide semiconductor (TiO2 ) mesopores on anodic alumina (AAO) macropores is wedeveloped. This inorganic membrane achieves the functions of ion channels and ion pumps, including the ion rectification and light-powered ion pumping. The asymmetric charge distribution across the bilayer membrane contributes to the cationic selectivity and ion rectification characteristics. The electrons induced by ultraviolet irradiation introduce a built-in electric field across TiO2 /AAO membrane, which pumps the active ion transport from a low to a high concentration. This work integrates the functions of biological ion channels and ion pumps within an artificial membrane for the first time, which paves the way to explore multifunctional membranes analogous to its biological counterpart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call