Abstract
The photosynthetic organelle of algae and plants (the plastid) traces its origin to a primary endosymbiotic event in which a previously non-photosynthetic protist engulfed and enslaved a cyanobacterium. This eukaryote then gave rise to the red, green and glaucophyte algae. However, many algal lineages, such as the chlorophyll c-containing chromists, have a more complicated evolutionary history involving a secondary endosymbiotic event, in which a protist engulfed an existing eukaryotic alga (in this case, a red alga). Chromists such as diatoms and kelps then rose to great importance in aquatic habitats. Another algal group, the dinoflagellates, has undergone tertiary (engulfment of a secondary plastid) and even quaternary endosymbioses. In this review, we examine algal diversity and show endosymbiosis to be a major force in algal evolution. This area of research has advanced rapidly and long-standing issues such as the chromalveolate hypothesis and the extent of endosymbiotic gene transfer have recently been clarified.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have