Abstract

The prolific amount of growth and reproduction in invasive plants may be achieved by greater net photosynthesis and/or resource-use efficiency. I tested the hypotheses that leaf-level photosynthetic capacity and resource-use efficiency were greater in two invasive species of Rubus as compared with two noninvasive species that have overlapping distributions in the Pacific Northwest. The invasive species had significantly higher photosynthetic capacity and maintained net photosynthesis (A) over a longer period of the year than the noninvasive species. The construction cost (CC) of leaf tissue per unit leaf mass was comparable among the four species, but the invasive species allocated less nitrogen (N) per unit leaf mass. On a leaf area basis, both leaf CC and N were higher for the invasive species. The specific leaf area (SLA) was also lower in the invasive species, indicating less photosynthetic area per gram leaf tissue. The invasive species achieved high A at lower resource investments than the noninvasive species, including having higher maximum photosynthetic rate (A(max)) per unit dark respiration (R(d)), greater A(max) per unit leaf N (photosynthetic nitrogen-use efficiency), and greater water-use efficiency as measured by instantaneous rates of A per unit transpiration (A/E) and by integrated A/E inferred from stable carbon isotope ratios (δ(13)C). Using discriminant analysis, these photosynthetic characteristics were found to be powerful in distinguishing between the invasive and noninvasive Rubus. A(max) and A/E were identified as the most useful variables for distinguishing between the species, and therefore, may be important factors contributing to the success of these invasive species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.