Abstract

The great damage caused by native invasive species on natural ecosystems is prompting increasing concern worldwide. Many studies have focused on exotic invasive species. In general, exotic invasive plants have higher resource capture ability and utilization capacity, and lower leaf construction cost (CC) compared to noninvasive plants. However, the physiological mechanisms that determine the invasiveness of native plants are poorly understood. We hypothesized that native invaders, like exotic invaders, may have higher resource capture ability and utilization efficiency compared to native noninvaders. To test this hypothesis, ecophysiological traits including light-saturated photosynthetic rate (Amax), specific leaf area (SLA), photosynthetic nitrogen use-efficiency (PNUE), photosynthetic energy-use efficiency (PEUE), and mass-based and area-based leaf construction cost (CCmass and CCarea) were measured. We compared the above traits between three pairs of native invasive and noninvasive native species, and between three pairs of exotic invasive and noninvasive species in Guangzhou, southern China. Our results showed that the native invaders had higher Amax, SLA, PNUE, PEUE and lower CCmass, CCarea, compared to native noninvaders and that these traits were also found in the exotic invaders. PNUE and PEUE in the native invaders were 150.3 and 129.0% higher, respectively, than in noninvasive native species, while these same measures in exotic invaders were 43.0 and 94.2% higher, respectively, than in exotic noninvasive species. The results indicated that native invaders have higher resource capture ability and resource utilization efficiency, suggesting that these traits may be a common biological foundation underlying successful invasion by both native and exotic invasives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call