Abstract

1. Increasing the sorbitol concentration in a suspension of intact chloroplasts induced a fast, transient and not very specific efflux of metabolites from chloroplasts to the medium. Stroma proteins were retained by the chloroplasts. 2. Within the first 30 s following hypertonic stress, the chloroplast volume decreased according to the Boyle-Mariotte relation. A subsequent and transient increase suggested some influx of external solute. 3. Dark reactions of intact chloroplasts such as starch degradation and formation of labelled 3-phosphoglycerate from dihydroxyacetone phosphate or ribose-5-phosphate and (14)CO2 were inhibited at low water potentials. After chloroplast rupture, the activity of stromal enzymes was decreased by high solute concentrations. Ribulose bisphosphate carboxylase exhibited a decrease of Vmax, while KmCO 2 remained unaltered. With sorbitol, sucrose, glycerol or glycinebetaine, 50% inhibition of enzymes was observed at osmotic potentials between 40 and 50 bar, with ethyleneglycol at about 70 bar. With salts such as KCl, 50% inhibition was found at 15 to 20 bar. 4. A comparison between inhibition of photosynthesis in intact chloroplasts and inhibition of enzymes in stroma extracts by solutes supports the notion that inhibition of photosynthesis at high osmotic potentials is mainly a solute effect. Another factor contributing to inhibition of photosynthesis in isolated chloroplasts is the loss of intermediates and cofactors which occurs during rapid osmotic dehydration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call