Abstract
During the irradiation of WO3 films d = 7–160 nm thick by light at λ = 320 nm (I = (1.5–7) × 1015 quantum cm−2 s−1), absorption band at λ = 850 nm appeared along with absorption band edge shift to shorter waves. The subsequent irradiation of samples at λ = 850 nm caused the disappearance of the longwave absorption band. The intrinsic absorption edge of WO3 films was determined (λ = 320 nm). The degree of transformations of WO3 films increased under atmospheric conditions as the intensity of incident light and the time of irradiation (1–140 min) grew and as film thickness decreased. A mechanism of photochemical transformations of WO3 films was suggested. This mechanism included the generation of electron-hole pairs, the recombination of part of nonequilibrium charge carriers, the formation of [eV a 2+ e] centers, and the isolation of photolysis products.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have