Abstract
During the irradiation of WO3 films d = 7–160 nm thick by light at λ = 320 nm (I = (1.5–7) × 1015 quantum cm−2 s−1), absorption band at λ = 850 nm appeared along with absorption band edge shift to shorter waves. The subsequent irradiation of samples at λ = 850 nm caused the disappearance of the longwave absorption band. The intrinsic absorption edge of WO3 films was determined (λ = 320 nm). The degree of transformations of WO3 films increased under atmospheric conditions as the intensity of incident light and the time of irradiation (1–140 min) grew and as film thickness decreased. A mechanism of photochemical transformations of WO3 films was suggested. This mechanism included the generation of electron-hole pairs, the recombination of part of nonequilibrium charge carriers, the formation of [eV a 2+ e] centers, and the isolation of photolysis products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.