Abstract

Whether binary neutron star mergers are the only astrophysical site of rapid neutron-capture process (r-process) nucleosynthesis remains unknown. Collapsars associated with long gamma-ray bursts (GRBs) and hypernovae are promising candidates. Simulations have shown that outflows from collapsar accretion disks can produce enough r-process materials to explain the abundances in the universe. However, there is no observational evidence to confirm this result at present. SN 2020bvc is a broad-lined Type Ic (Ic-BL) supernova (SN) possibly associated with a low-luminosity GRB. Based on semi-analytic SN emission models with and without r-process materials, we perform a fitting to the multiband light curves and photospheric velocities of SN 2020bvc. We find that in a r-process-enriched model the mixing of r-process materials slows down the photospheric recession and therefore matches the velocity evolution better. The fitting results show that r-process materials with mass of ≈0.36 M ⊙ and opacity of ≈4 cm2 g−1 is needed to mix with about half of the SN ejecta. Our fitting results are weakly dependent on the nebular emission. Future statistical analysis of a sample of Type Ic-BL SNe helps us understand the contribution of collapsars to the r-process abundance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call