Abstract

Photosensing based on colloidal quantum dots (CQDs) is a rapidly developing area of infrared photoelectronics. The use of colloidal quantum dots markedly simplifies the manufacture, decreases the restrictions to the pixel pitch of the photosensitive elements, and reduces the production cost, which facilitates the wide use of IR sensors in various technological systems. This paper is the first exhaustive overeview of the architectures, methods of manufacturing and basic properties of photonic sensors based on colloidal quantum dots of compounds of Group II, IV and VI elements. Characteristic features of the synthesis and roles of the ligands and CQD morphology in the design of photosensors are considered in detail. The structures of photoresistive, photodiode and phototransistor elements based on HgTe, HgSe, PbS and PbSe CQDs, which are sensitive in various spectral ranges, are described. The main parameters of the most advanced optoelectronic devices based on colloidal quantum dot structures are presented. The key trends in the development of this area are analyzed.<br> Bibliography — 361 references.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call