Abstract
Photosensitization of semiconductors by excitation of chiral plasmonic metallic nanostructures has attracted much attention, not only for the analysis and detection of circularly polarized light but also for its potential applications in chiral photosynthesis. Although there have been reports on the detection of semiconductor-sensitized current in chiral nanostructures precisely fabricated by physical vapor deposition and/or lithography techniques, there have been no studies using plasmonic metal nanocolloids synthesized by chemical processes. In this study, we report the establishment of a fabrication method for large-area chiral photoelectrodes and the semiconductor photosensitization phenomenon realized using chiral plasmonic nanoparticles. Chiral plasmonic Au nanoparticles prepared by previously reported colloidal methods were immobilized onto a TiO2 thin film electrode by electrophoresis. When TiO2 electrodes loaded with chiral Au nanoparticles synthesized using L-cysteine were irradiated with circularly polarized light, left circularly polarized light irradiation at a wavelength of 500-600nm generated a larger anodic photocurrent than right circularly polarized light irradiation at the same wavelength. This trend was reversed for TiO2 electrodes immobilized with colloidal Au nanoparticles synthesized with D-cysteine. From these results, we conclude that the efficiency of photocurrent generation by chiral plasmon excitation can be controlled by the polarization direction of the incident light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.