Abstract
Sensitized photocurrent generation is observed with a porphyrin dyad (PZn-P) and its structural moieties: 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl) porphyrin (P) and Zn(II) 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl) porphyrin (PZn). The dyes were adsorbed to saturation on a nanocrystalline SnO2 thin film, employed as working electrode in a photoelectrochemical cell. The metallized and unmetallized moieties possess different singlet state energies and redox properties. In both, solution and adsorbed state, nearly complete singlet−singlet energy transfer from the PZn to P has been determined in the dyad. PZn is less efficient than P in the photocurrent generation, but is a suitable energy donor in the dyad molecule. The generation of photoelectrical effects by the dyad is less effective in comparison with P. Considering the oxidation potentials of the two moieties in PZn−P, a mechanism is proposed where the oxidized metallized porphyrin enhances the back electron-transfer process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.