Abstract

Free-base (P), Zn(II) (P(Zn)), Cu(II) (P(Cu)), Pd(II) (P(Pd)), Ni(II) (P(Ni)), and Co(II) (P(Co)) 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl) porphyrins were designed and synthesized to be employed as spectral senzitizers in photoelectrochemical cells. The dyes were studied adsorbed on SnO(2) nanocrystalline semiconductor and also in Langmuir-Blodgett film ITO electrodes in order to disclose the effect of molecular packing on the studied properties. Electron injection yields were obtained by fluorescence quenching analysis comparing with the dyes adsorbed on a SiO(2) nanocrystalline insulator. Back electron-transfer kinetics were measured by using laser flash photolysis. The unmetallized and metallized molecules have different singlet state energies, fluorescence quantum yields, and redox properties. The quantum yields of sensitized photocurrent generation are shown to be highly dependent on the identity of the central metal. It is shown that P(Ni) and P(Co) do not present a photoelectric effect. The other porhyrins present reproducible photocurrent, P(Pd) being the one that gives the highest quantum yield even in closely packet ITO/LB films. Photocurrent quantum yields increase as the dye ground-state oxidation potential becomes more anodic, which is in agreement with the observation, obtained by laser flash photolysis, that back electron-transfer kinetics decrease with the increase in the driving force for the recombination process. This effect could be exploited as a design element in the development of new and better sensitizers for high-efficiency solar cells involving porphyrins and related dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.