Abstract

Porous materials are the subject of extensive research because of potential applications in areas such as gas adsorption and molecular separations. Until recently, most porous materials were solids, but there is now an emerging class of materials known as porous liquids. The incorporation of intrinsic porosity or cavities in a liquid can result in free-flowing materials that are capable of gas uptakes that are significantly higher than conventional non-porous liquids. A handful of porous liquids have also been investigated for gas separations. Until now, the release of gas from porous liquids has relied on molecular displacement (e.g., by adding small solvent molecules), pressure or temperature swings, or sonication. Here, we explore a new method of gas release which involves photoisomerisable porous liquids comprising a photoresponsive MOF dispersed in an ionic liquid. This results in the selective uptake of CO2 over CH4 and allows gas release to be controlled by using UV light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call