Abstract

A photorefractive phase shift can be generated under dc applied fields if the dominant photocarriers have a nonlinear velocity-field dependence with a vanishing differential mobility. Phase shifts as large as pi/2 are possible when velocity saturation disables dielectric relaxation while still permitting large drift rates. The inability of the space-charge field to relax leads to a saturated trap density that mimics trap-limited behavior. All direct-gap photorefractive semiconductors have strong velocity saturation from hot-electron transport effects, most widely known for the origin of the Gunn effect. Previous photorefractive trap-limited-field studies may have to be reevaluated in the context of transport nonlinearity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.