Abstract
Nonlinear transport of hot electrons in semi-insulating GaAs / AlGaAs quantum wells significantly affects their photorefractive properties. In case of two waves mixing, this influence consists, among others, in an increased shift of photorefractive grating relative to light intensity distribution. The influence of nonlinear transport on grating recording time is less examined experimentally and theoretically. This study compares numerical and analytical solutions describing grating dynamics in approximation of small fringe contrast. The influence of nonlinear electron mobility on space-charge field was examined depending on external electric field intensity and on the grating constant. It was found that in the electric field range below 20 kV/cm, the nonlinear transport of electrons does not shorten the grating generation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nonlinear Optical Physics & Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.