Abstract

The swimming tadpole larva of Ciona has one of the simplest central nervous systems (CNSs) known, with only 177 neurons. Despite its simplicity, the Ciona CNS has a common structure with the CNS of its close chordate relatives, the vertebrates. The recent completion of a larval Ciona CNS connectome creates enormous potential for detailed understanding of chordate CNS function, yet our understanding of Ciona larval behavior is incomplete. We show here that Ciona larvae have a surprisingly rich and dynamic set of visual responses, including a looming-object escape behavior characterized by erratic circular swims, as well as negative phototaxis characterized by sustained directional swims. Making use of mutant lines, we show that these two behaviors are mediated by distinct groups of photoreceptors. The Ciona connectome predicts that these two behavioral responses should act through distinct, but overlapping, visuomotor pathways, and that the escape behavior is likely to be integrated into a broader startle behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.