Abstract

We report the measurement of the $\gamma p \rightarrow K^{+}\Lambda$ and $\gamma p \rightarrow K^{+}\Sigma^{0}$ reactions at SPring-8. The differential cross sections and photon-beam asymmetries are measured at forward $K^{+}$ production angles using linearly polarized tagged-photon beams in the range of $E_{\gamma}=1.5$--3.0 GeV. With increasing photon energy, the cross sections for both $\gamma p \rightarrow K^{+}\Lambda$ and $\gamma p \rightarrow K^{+}\Sigma^{0}$ reactions decrease slowly. Distinct narrow structures in the production cross section have not been found at $E_{\gamma}=1.5$--3.0 GeV. The forward peaking in the angular distributions of cross sections, a characteristic feature of $t$-channel exchange, is observed for the production of $\Lambda$ in the whole observed energy range. A lack of similar feature for $\Sigma^{0}$ production reflects a less dominant role of $t$-channel contribution in this channel. The photon-beam asymmetries remain positive for both reactions, suggesting the dominance of $K^{*}$ exchange in the $t$ channel. These asymmetries increase gradually with the photon energy, and have a maximum value of +0.6 for both reactions. Comparison with theoretical predictions based on the Regge trajectory in the $t$ channel and the contributions of nucleon resonances indicates the major role of $t$-channel contributions as well as non-negligible effects of nucleon resonances in accounting for the reaction mechanism of hyperon photoproduction in this photon energy regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.