Abstract

Although large diameter vessels made of polyurethane materials have been widely used in clinical practice, the biocompatibility and long-term patency of small diameter artificial vessels have not been well addressed. Any technological innovation and advancement in small-diameter artificial blood vessels is of great interest to the biomedical field. Here a novel technique is used to produce artificial blood vessels with a caliber of less than 6 mm and a wall thickness of less than 0.5 mm by rotational exposure, and to form a bionic inner wall with a periodically micro-nano structure inside the tube by laser double-beam interference. The polyethylene glycol diacrylate used is a widely recognized versatile biomaterial with good hydrophilicity, biocompatibility and low cytotoxicity. The effect of the bionic structure on the growth of hepatocellular carcinoma cells and human umbilical vein endothelial cells was investigated, and it was demonstrated that the prepared vessels with the bionic structure could largely promote the endothelialization process of the cells inside them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.