Abstract

The kinetics of thiol–enol photopolymerization of a hybrid composition based on a tetraacrylate monomer and a thiol-siloxane oligomer was studied with the use of a holographic recording of elementary transmission phase gratings. The degrees of conversion of double bonds in the tetraacrylate monomer after the polymerization in air and in an inert atmosphere of SF6 were measured via IR spectroscopy. It is shown that the use of the thiol-siloxane oligomer efficiently suppresses oxygen inhibition of the photopolymerization. When the photoinitiator concentration is increased to more than 10–2 mol/L, the photopolymerization rate levels off. An increase in the thiol-siloxane oligomer concentration leads to an extremal dependence of the photopolymerization rate on the oligomer concentration; the maximum rate is reached at an oligomer concentration of about 0.07 mol/L. The kinetic scheme of photopolymerization in the hybrid photopolymer composition was analyzed, and an analytical expression for the photopolymerization rate was obtained. The correlation between the kinetic constants of the thiol–enol photopolymerization was evaluated on the basis of the obtained parameters of the kinetic model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call