Abstract

The phototrophic bacterium Rhodopseudomonas capsulata can obtain energy for dark anaerobic growth from sugar fermentations dependent on accessory oxidants such as trimethylamine-N-oxide or dimethyl sulfoxide. Cells grown for one to two subcultures in this fashion, with fructose as the energy source, showed approximately a twofold increase in bacteriochlorophyll content (per milligram of cell protein) and developed extensive intracytoplasmic membranes in comparison with cells grown photosynthetically at saturating light intensity. Cells harvested from successive anaerobic dark subcultures, however, showed progressively lower pigment contents. After ca. 20 transfers, bacteriochlorophyll and carotenoids were barely detectable, and the amount of intracytoplasmic membrane diminished considerably. Spontaneous mutants incapable of producing normal levels of photosynthetic pigments arose during prolonged anaerobic dark growth. Certain mutants of this kind appear to have a selective advantage over wild-type cells under fermentative growth conditions. Of four pigment mutants characterized (two being completely unable to produce bacteriochlorophyll), only one retained the capacity to grow photosynthetically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.