Abstract

The phototrophic bacterium Rhodopseudomonas capsulata was found to be capable of growing chemoautotrophically under aerobic conditions in darkness. Growth was strictly dependent on the presence of H2 as the source of energy and reducing power, O2 as the terminal electron acceptor for energy transduction, and CO2 as the sole carbon source; under optimal conditions the generation time was about 6 h. Chemoautotrophically grown cells showed a relatively high content of bacteriochlorophyll a and intracytoplasmic membranes (chromatophores). Experiments with various mutants of R. capsulata, affected in electron transport, indicate that either of the two terminal oxidases of this bacterium can participate in the energy-yielding oxidation of H2. The ability of R. capsulata to multiply in at least five different physiological growth modes suggests that it is one of the most metabolically versatile procaryotes known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.