Abstract
The photophysical properties of seven new 8-(p-substituted)phenyl analogues of 4,4-difluoro-3,5-dimethyl-8-(aryl)-4-bora-3a,4a-diaza-s-indacene (derivatives of the well-known fluorophore BODIPY) in several solvents have been studied by means of absorption and steady-state and time-resolved fluorimetry. For each compound, the fluorescence quantum yield and lifetime are lower in solvents with higher polarity owing to an increase in the rate of nonradiative deactivation. Increasing the electron withdrawing strength of the p-substituent on the phenyl group in position 8 also leads to lower fluorescence quantum yields and lifetimes. When the p-substituent on the phenyl group in position 8 is a tertiary amine [8-(4-piperidinophenyl), 8-(4-N,N-dimethylaminophenyl), and 8-(4-morpholinophenyl)], the low quantum yields of these compounds in more polar solvents can be rationalized by the inversion of the energy levels of an apolar, highly fluorescent and a polar, nonfluorescent excited state, where charge transfer from the tertiary amine to the BODIPY unit occurs. These amine analogues can be protonated at low pH in aqueous solution. Fluorescence titrations yielded pK(a) values of their conjugate ammonium salts which are in agreement with the electron donating tendency of the amine group: piperidino (4.15) > dimethylamino (2.37) > morpholino (1.47), with the pK(a) values in parentheses. The rate constant of radiative deactivation (k(f)) is the same for all compounds in all solvents studied (k(f) = 1.4 x 10(8) s(-1)).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have