Abstract

The photooxidation of ethanol and 2-propanol was studied under UHV conditions on a single crystal TiO2(110) surface using a combination of temperature programmed desorption (TPD) and pump-probe laser ionization techniques. Previous studies of these reactions have shown that the first step involves photocatalytic dehydrogenation to either an acetaldehyde or acetone intermediate. In this work, we show that when adsorbed alcohols are irradiated with UV light in the presence of molecular oxygen, methyl radicals are ejected from the surface. Furthermore, it is shown that these radicals possess kinetic energy distributions which are remarkably similar to those measured for the photooxidation of acetaldehyde and acetone. This result suggests that methyl radicals are produced during a second photocatalytic step which involves photooxidation of the aldehyde/ketone intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.