Abstract
It is generally held that radicals form and participate in heterogeneous photocatalytic processes on oxide surfaces, although understanding the mechanistic origins and fates of such species is difficult. In this study, photodesorption and thermal desorption techniques show that acetone is converted into acetate on the surface of TiO2(110) in a two-step process that involves, first, a thermal reaction between acetone and coadsorbed oxygen to make a surface acetone-oxygen complex, followed second by a photocatalytic reaction that ejects a methyl radical from the surface and converts the acetone-oxygen complex into acetate. Designation of the photodesorption species to methyl radicals was confirmed using isotopically labeled acetone. The yield of photodesorbed methyl radicals correlates well with the amount of acetone depleted and with the yield of acetate left on the surface, both gauged using postirradiation temperature programmed desorption (TPD). The thermal reaction between adsorbed acetone and oxygen to form the acetone-oxygen complex exhibits an approximate activation barrier of about 10 kJ/mol. A prerequisite to this reaction is the presence of surface Ti3+ sites that enable O2 adsorption. Creation of these sites by vacuum reduction of the surface prior to acetone and oxygen coadsorption results in an initial spike in the acetone photooxidation rate, but replenishment of these sites by photolytic means (i.e., by trapping excited electrons at the surface) appears to be a slow step in a sustained reaction. Evidence in this study for the ejection of organic radicals from the surface during photooxidation catalysis on TiO2 provides support for mechanistic pathways that involve both adsorbed and nonadsorbed species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.