Abstract

We study the time evolution of photon number parity operator for a single-mode quantized cavity field interacting with a two-level atom as described by the resonant Jaynes–Cummings model. With the field prepared in a coherent state and the atom prepared in its excited state, we find that the photon number parity undergoes oscillations at the Rabi frequency but only during the period between the collapse and revival of the Rabi oscillations of the atomic inversion. We explain this in terms of the global parity of the Jaynes–Cummings model. The phenomenon is related to the interference of the counter-rotating components of the field in phase space, which in turn gives rise to occurrence of highly oscillatory photon number probability distributions near half the revival time of the atomic inversion noted by Bužek et al. (Phys. Rev. A 45, 1992, p. 8190). Detection of the photon number oscillations would amount to a detection of this interference effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.