Abstract

Colloidal crystals show structural colors through wavelength-selective diffraction at photonic stopbands. Here, we design photonic Janus balls with a controlled magnetic moment for programmable structural color switching. The Janus balls are produced from microfluidically produced paired drops of two distinct photocurable resins. The lighter resin contains magnetic nanoparticles and carbon black, whereas heavier one contains silica particles at a high volume fraction. The paired drops spontaneously align vertically due to the density asymmetry. The magnetic moment is assigned in the vertically aligned drops by aligning magnetic nanoparticles with an external field and capturing them through photopolymerization. Silica particles in the heavier compartment spontaneously form crystalline arrays due to interparticle repulsion, developing structural colors. The resulting photonic Janus balls vertically align without an external field, like a roly-poly toy, so that carbon-black-laden compartments face upward. With an external magnetic field, the Janus balls align their magnetic moment to the field and display structural colors. Importantly, the direction of the magnetic moment is set by the direction of the external field during photopolymerization, which enables the simultaneous manipulation of orientations of distinct photonic Janus balls in a programmed manner. These photonic Janus balls are potentially useful as active color inks for anti-counterfeiting tags.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.