Abstract
Rare earth ions are known as promising candidates for building quantum light-matter interface. However, tunable photonic cavity access to rare earth ions in their desired host crystal remains challenging. Here, we demonstrate the integration of erbium doped yttrium orthosilicate (Er3+:Y2SiO5) with thin-film lithium niobate photonic circuit by plasma-activated direct flip chip bonding. Resonant coupling to erbium ions is realized by on-chip electro-optically tuned high Q lithium niobate micro-ring resonators. Fluorescence and absorption of erbium ions at 1536.48 nm are measured in the waveguides, while the collective ion-cavity cooperativity with micro-ring resonators is assessed to be 0.36. This work presents a versatile scheme for future rare earth ion integrated quantum devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.