Abstract

InP-based high electron mobility transistors (InP-HEMTs) and graphene-channel FETs (G-FETs) are experimentally examined as photonic frequency converters for future broadband optical and wireless communication systems. Optoelectronic properties and three-terminal functionalities of the InP-HEMTs and G-FETs are exploited to perform single-chip photonic double-mixing operation over the 120 GHz wireless communication band. A 10 Gbit/s-class data signal on a 112.5 GHz carrier is mixed down to a 25 GHz IF band with an 87.5 GHz LO signal that is simultaneously self-generated from an optically injected photomixed beat note. The results suggest that the intrinsic channel of the G-FET can achieve a speed performance that is superior to that of an InP-HEMT having an equivalent device feature size. The reduction of the extrinsic parasitic resistances and the implementation of an efficient photo-absorption structure in the G-FET may allow a millimeter-wave and sub-THz photonic frequency conversion with a sufficiently high conversion gain for practical purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.