Abstract
Photonic crystal slabs integrated into organic light-emitting diodes (OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible polycarbonate substrates using UV nanoimprint lithography. A hybrid organic–inorganic nanoimprint resist is used that serves also as a high refractive index layer. OLEDs composed of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer anode, an organic emission layer [poly(p-phenylene vinylene) (PPV)-derivative “Super Yellow”], and a metal cathode (LiF/Al) are deposited onto the flexible grating substrates. The effects of photonic crystal slab deformation in a flexible OLED are studied in theory and experiment. The substrate deformation is modeled using the finite-element method. The influence of the change in the grating period and the waveguide thickness under bending are investigated. The change in the grating period is found to be the dominant effect. At an emission angle of 20° a change in the resonance wavelength of 1.2% is predicted for a strain of 1.3% perpendicular to the grating grooves. This value is verified experimentally by analyzing electroluminescence and photoluminescence properties of the fabricated grating OLEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.