Abstract
Realizing high-peak-power (tens to hundreds of watts or higher) short-pulse (tens of picoseconds or less) operation in semiconductor lasers is crucial for state-of-the-art applications including eye-safe high-resolution remote sensing and non-thermal ultrafine material processing. However, it has been challenging to introduce mechanisms that enable stable high-peak-power short-pulse operation in conventional semiconductor lasers. Here, we propose photonic crystal lasers that have two-dimensionally arranged gain and loss sections to enable high-peak-power short-pulse operation in the fundamental mode while suppressing lasing in higher-order modes to avoid laser instability. On the basis of this concept, we experimentally realize a high peak power of ~20 W and a short pulse width of ~35 ps with an injection current of only 3-4 A using a 400-μm-diameter device and theoretically predict that even higher peak power (>300 W) can be achieved in a 1-mm-diameter device. Our results will contribute to the realization of next-generation laser sources for the aforementioned applications. By using engineered gain and loss sections in a photonic crystal laser, pulses with a peak power of ~20 W and pulse width of ~35 ps have been experimentally demonstrated and even higher peak power operation (>300 W) has been theoretically predicted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have