Abstract
Inverse TiO(2) opal photonic crystal coupled TiO(2)/poly(3-hexylthiophene) (bilayer TiO(2)/P3HT) was structured on FTO substrate for efficient photocatalysis under visible light irradiation (lambda > 400 nm). We expected that the photocatalytic capability of this hybrid photocatalyst could be enhanced by the efficient visible light absorption owing to the photonic crystal structure and effective charge separation owing to the unique heterojunction built between TiO(2) and P3HT. The bilayer TiO(2)/P3HT photocatalyst was prepared first by depositing inverse TiO(2) opal on FTO substrate via replicating polystyrene opal, followed by spin coating a layer of TiO(2) nanoparticles on the inverse TiO(2) opal. The as prepared bilayer TiO(2) was modified by P3HT via dipping method. Environmental scanning electron microscopy (ESEM) images demonstrated that the as prepared photocatalyst was composed of inverse TiO(2) opal layer and TiO(2) nanoparticles layer. The UV-vis diffuse reflectance spectra showed that the optical absorption for bilayer TiO(2)/P3HT was more intensive than for pristine TiO(2) nanoparticle/P3HT (NP-TiO(2)/P3HT) in the range of 400-650 nm. The enhanced generation of photocurrent under visible light irradiation (lambda > 400 nm) was observed using the bilayer TiO(2)/P3HT. The results of photocatalytic experiments under visible light irradiation revealed that the pseudofirst-order kinetic constant of photocatalytic degradation of methylene blue using the bilayer TiO(2)/P3HT was 2.08 times as great as that using NP-TiO(2)/P3HT, showing the advantage of the unique structure in the bilayer TiO(2)/P3HT for efficient photocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.