Abstract

Improving the precision of optically performed computations is a critical aspect of photonic computing. One possible method for improving precision is through the use of modified signed-digit (MSD) arithmetic. Optical implementation of MSD arithmetic offers several important advantages over other optical techniques such as the digital multiplication by analog convolution (DMAC) algorithm or the use of residue arithmetic. These advantages include the parallel pipeline flow of digits due to carry-free addition and subtraction, fixed-point as well as floating-point capability, and the potential for performing divisions. We present a brief description of the modified signed-digit number system and suggest one optical architecture for implementing MSD fixed-point addition, subtraction, and multiplication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.