Abstract

AbstractGermanium self‐assembled nanoislands and quantum dots are very prospective for CMOS‐compatible optoelectronic integrated circuits but their photoluminescence (PL) intensity is still insufficient for many practical applications. Here, it is demonstrated experimentally that the PL of Ge nanoislands in silicon photonic crystal slabs (PCS) with hexagonal lattice can be dramatically enhanced due to the involvement in the emission process of the bounds states in the continuum. These high‐Q photonic resonances allow to achieve PL resonant peaks with the quality factor as high as 2200 and with the peak PL enhancement factor of more than two orders of magnitude. The corresponding integrated PL enhancement is demonstrated to be more than one order of magnitude. This effect is studied theoretically by the Fourier modal method in the scattering matrix form. The symmetry of the quasi‐normal guided modes in the PCS is described in terms of group theory. This work paves the way toward a new class of optoelectronic components compatible with silicon technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.