Abstract
We study the interaction of a Bose-Einstein condensate, which is confined in an optical lattice, with a largely detuned light field propagating through the condensate. If the condensate is in its ground state it acts as a periodic dielectric and gives rise to photonic band gaps at optical frequencies. The band structure of the combined system of condensed lattice-atoms and photons is studied by using the concept of polaritons. If elementary excitations of the condensate are present, they will produce defect states inside the photonic band gaps. The frequency of localized defect states is calculated using the Koster-Slater model.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have