Abstract
We analyze a chain of coupled nonlinear optical cavities driven by a coherent source of light localized at one end and subject to uniform dissipation. We characterize photon transport by studying the populations and the photon correlations as a function of position. When complemented with input-output theory, these quantities provide direct information about photon transmission through the system. The position of single- and multi-photon resonances directly reflect the structure of the many-body energy levels. This shows how a study of transport along a coupled cavity array can provide rich information about the strongly correlated (many-body) states of light even in presence of dissipation. By means of a numerical algorithm based on the time-evolving block decimation scheme adapted to mixed states, we are able to simulate arrays up to sixty cavities.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have