Abstract

The reactive pulsed laser deposition (RPLD) based on a KrF laser was used for photon synthesis of nanometric iron and chromium oxides films. RPLD allows controlling the thickness and stoichiometry of deposits with definite band gap. So RPLD was used for synthesizing nanometric iron and chromium oxides films for thermo-photo-chemical sensors. We compared sensing properties of iron and chromium oxides nanometric films deposited on <100>Si substrate by RPLD. These iron and chromium oxides films have semiconductor properties with the band gaps less than 1.0 eV. The largest photosensitivity of iron and chromium oxides films was about 44 Vc/W and 2.5 Vc/W, accordingly, for white light at power density ~ 6x10-3 W/cm2. Vc is “chemical” photo e.m.f.. Maximum value of thermo electromotive force (e.m.f.) coefficient of iron and chromium oxides films was about 1.65 mV/K and 3.5-4.5mV/K, accordingly. Iron oxides films were tested as chemical sensors: the largest sensitivity of NO molecules was at the level of 7x1012 cm-3. Our results showed that nanometric iron and chromium oxides films synthesized by UV photons can be used as up-to-date materials for multi-parameter sensors operating at moderate temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.