Abstract

We present a numerical analysis and preliminary experimental results on one-dimensional Fabry–Perot micro-cavities in Si 3N 4waveguides. The Fabry–Perot micro-cavities are formed by two distributed Bragg reflectors separated by a straight portion of a waveguide. The Bragg reflectors are composed of a few air slits produced within the Si 3N 4 waveguides. In order to increase the quality factor of the micro-cavities, we have minimized, with a multiparametric optimization tool, the insertion loss of the reflectors by varying the length of their first pairs (those facing the cavity). To explain the simulation results, the coupling of the fundamental waveguide mode with radiative modes in the Fabry–Perot micro-cavities is needed. This effect is described as a recycling of radiative modes in the waveguide. To support the modelling, preliminary experimental results of micro-cavities in Si 3N 4 waveguides realized with the focused ion beam technique are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.