Abstract

The aim of this article is to review experimental studies of visible and infrared light irradiation of human and animal stem cells (SCs) in vitro and in vivo to assess photobiomodulation effects on their proliferation and differentiation. The clinical application of light irradiation remains controversial, primarily because of the complexity of the rational choice of irradiation parameters. In laboratories, the theoretical justification underlying the choice of irradiation parameters also remains a challenge. A systematic review was completed of original research articles that investigated the effects of light irradiation on human and animal SCs in vitro and in vivo (to June 2014). Relevant articles were sourced from PubMed and MEDLINE(®). The search terms were laser (light) therapy (irradiation), stem cells, and phototherapy, stem cells. The analysis revealed the importance of cell type when choosing the cell irradiation parameters. The influence of wavelength on the SC proliferation rate seemed to be nonsignificant. The high values of increased proliferation or differentiation were obtained using high power density, low energy density, and short exposure time. SC exposure to light without inducers did not lead to their differentiation. The maximum differentiation was achieved using irradiation parameters different from the ones needed to achieve the maximum proliferation of the same cells. Increased power density and reduced energy density were needed to increase the SC response. Based on the analysis, we have presented a graph of the cell response to generalized photostimulus, and introduced the concepts of "photostress" and "photoshock" to describe the stages of this response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call