Abstract
Photometric reverberation mapping employs a wide band pass to measure the AGN continuum variations and a suitable narrow band to trace the echo of an emission line in the broad line region (BLR). The narrow band catches both the emission line and the underlying continuum, and one needs to extract the pure emission line light curve. We performed a test on two local AGNs, PG0003+199 and Ark120, by observing well-sampled broad- (B, V) and narrow-band light curves with the robotic 15 cm telescope VYSOS-6 on Cerro Armazones, Chile. We find that, as long as the emission line contributes 50% to the band pass, the pure emission line light curve can be reconstructed from photometric monitoring data so that the time lag τ can be measured. For both objects the lags are consistent with spectroscopic reverberation results. We calculated virial black hole masses in agreement with literature values, by combining the BLR size RBLR (τ) from photometric monitoring with the velocity dispersion of a single contemporaneous spectrum. Applying the flux variation gradient method, we estimate the host galaxy contribution in the apertures used and the host-subtracted restframe 5100 Å luminosity LAGN. Our LAGN differs significantly from previous estimates, placing both sources ~50% closer to the RBLR − LAGN relation. This suggests that the scatter in the current RBLR − LAGN relation is largely caused by uncertainties in RBLR due to undersampled light curves and by uncertainties in the host-subtracted AGN luminosities inferred so far. If the scatter can be reduced, then two quasar samples matching in RBLR should also match in intrinsic LAGN, independent of redshift, thus offering the prospect of probing cosmological models. Photometric reverberation mapping opens the door to efficiently measuring hundreds of BLR sizes and host-subtracted AGN luminosities even with small telescopes, but also routinely with upcoming large survey telescopes like the LSST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.