Abstract

Azidoporphinatoiron(III) ([1]) is an archetypal model complex for the photochemical generation of nitridoiron(V) complexes via cleavage of dinitrogen. So far, this process has only been studied with continuous irradiation in thin films under cryogenic conditions or in frozen solutions. In addition, the photooxidation from iron(III) to iron(V) competes with photoreduction to iron(II) via cleavage of an azidyl radical. The quantum yields of both pathways remained hitherto undisclosed. Here, we investigated the photolysis of this model complex in room temperature liquid solution using stationary and time-resolved infrared spectroscopy. The two reaction pathways are unambiguously identified in quenching studies and their quantum yields are accurately determined. Nitridoporphinatoiron(V) ([2]) exhibits N-atom-2-electron-transfer reactivity toward tert-butyl isonitrile and forms a carbodiimido species. In the presence of tert-butyl isonitrile, the two products of the photoreduction pathway react to cationic diisonitriloporphinatoiron(III) and azide anions, which in turn combine to reform [1] and the quencher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call