Abstract

Azidoporphinatoiron(III) ([1]) is an archetypal model complex for the photochemical generation of nitridoiron(V) complexes via cleavage of dinitrogen. So far, this process has only been studied with continuous irradiation in thin films under cryogenic conditions or in frozen solutions. In addition, the photooxidation from iron(III) to iron(V) competes with photoreduction to iron(II) via cleavage of an azidyl radical. The quantum yields of both pathways remained hitherto undisclosed. Here, we investigated the photolysis of this model complex in room temperature liquid solution using stationary and time-resolved infrared spectroscopy. The two reaction pathways are unambiguously identified in quenching studies and their quantum yields are accurately determined. Nitridoporphinatoiron(V) ([2]) exhibits N-atom-2-electron-transfer reactivity toward tert-butyl isonitrile and forms a carbodiimido species. In the presence of tert-butyl isonitrile, the two products of the photoreduction pathway react to cationic diisonitriloporphinatoiron(III) and azide anions, which in turn combine to reform [1] and the quencher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.