Abstract
Cell therapy is a promising strategy to treat ischemic diseases, but the efficacy is limited due to high rate of cell death under low oxygen environment of the ischemic tissues. Sustained release of oxygen to continuously oxygenate the transplanted cells may augment cell survival and improve therapeutic efficacy. We have shown previously that oxygen released from oxygen-release microspheres stimulated cell survival in ischemic tissue [1]. To understand how oxygen is released in vivo and duration of release, it is attractive to image the process of oxygen release. Herein, we have developed photoluminenscent oxygen-release microspheres where the in vivo oxygen release can be non-invasively and real-time monitored by an In Vivo Imaging System (IVIS). In the oxygen-release microspheres, a complex of polyvinylpyrrolidone, H2O2 and a fluorescent drug hypericin (HYP) was used as core, and poly(N-isopropylacrylamide-co-acrylate-oligolactide-co-hydroxyethyl methacrylate-co-N-acryloxysuccinimide) conjugated with catalase was used as shell. To distinguish fluorescent signal change for different oxygen release kinetics, the microspheres with various release profiles were developed by using the shell with different degradation rates. In vitro, the fluorescent intensity gradually decreased during the 21-day oxygen release period, consistent with oxygen release kinetics. The released oxygen significantly augmented mesenchymal stem cell (MSC) survival under hypoxic condition. In vivo, the oxygen release rate was faster. The fluorescent signal can be detected for 17 days for the microspheres with the slowest oxygen release kinetics. The implanted microspheres did not induce substantial inflammation. The above results demonstrate that the developed microspheres have potential to monitor the in vivo oxygen release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.